(0,1)-category theory: logic, order theory
proset, partially ordered set (directed set, total order, linear order)
distributive lattice, completely distributive lattice, canonical extension
Classically, a truth value is either (true) or (false), hence an element of the boolean domain.
(In constructive mathematics, this is not so simple, although it still holds that any truth value that is not true is false.)
More generally, a truth value in a topos is a morphism (where is the terminal object and is the subobject classifier) in . By definition of , this is equivalent to an (equivalence class of) monomorphisms . In a two-valued topos, it is again true that every truth value is either or , while in a Boolean topos this is true in the internal logic.
Truth values form a poset (the poset of truth values) by declaring that precedes iff the conditional is true. In a topos , precedes if the corresponding subobject is contained in . Classically (or in a two-valued topos), one can write this poset as .
The poset of truth values is a Heyting algebra. Classically (or internal to a Boolean topos), this poset is even a Boolean algebra. It is also a complete lattice; in fact, it can be characterised as the initial complete lattice. As a complete Heyting algebra, it is a frame, corresponding to the one-point locale.
When the set of truth values is equipped with the Scott topology (equivalently the specialization topology classically), the result is Sierpinski space.
A truth value may be interpreted as a -poset or as a -groupoid. It is also the best interpretation of the term ‘-category’, although this doesn't fit all the patterns of the periodic table.
In synthetic topology with a dominance, some truth values are open.
homotopy level | n-truncation | homotopy theory | higher category theory | higher topos theory | homotopy type theory |
---|---|---|---|---|---|
h-level 0 | (-2)-truncated | contractible space | (-2)-groupoid | true/?unit type/?contractible type | |
h-level 1 | (-1)-truncated | contractible-if-inhabited | (-1)-groupoid/?truth value | (0,1)-sheaf/?ideal | mere proposition/?h-proposition |
h-level 2 | 0-truncated | homotopy 0-type | 0-groupoid/?set | sheaf | h-set |
h-level 3 | 1-truncated | homotopy 1-type | 1-groupoid/?groupoid | (2,1)-sheaf/?stack | h-groupoid |
h-level 4 | 2-truncated | homotopy 2-type | 2-groupoid | (3,1)-sheaf/?2-stack | h-2-groupoid |
h-level 5 | 3-truncated | homotopy 3-type | 3-groupoid | (4,1)-sheaf/?3-stack | h-3-groupoid |
h-level | -truncated | homotopy n-type | n-groupoid | (n+1,1)-sheaf/?n-stack | h--groupoid |
h-level | untruncated | homotopy type | ∞-groupoid | (∞,1)-sheaf/?∞-stack | h--groupoid |
备孕要注意什么 | 5月21日什么星座 | 肚子拉稀像水一样是什么情况 | 危楼高百尺的危是什么意思 | 生化妊娠后需要注意什么 |
什么是信念 | 皮疹是什么 | 双非是什么 | 葡萄糖偏高有什么问题 | 为什么眨眼睛 |
体温低是什么原因 | 挂是什么意思 | 车震是什么 | 八月十六号是什么星座 | 东方为什么红 |
舌头上有裂纹是什么原因 | 内射什么感觉 | 319是什么意思 | 为什么喜欢春天 | 鱼香肉丝属于什么菜系 |
a血型和o血型生出宝宝是什么血型helloaicloud.com | 中性粒细胞高说明什么wuhaiwuya.com | 用什么刷牙能使牙齿变白hcv9jop7ns0r.cn | 杧果是什么hcv7jop4ns7r.cn | lady是什么意思hcv9jop1ns0r.cn |
什么是集体户口hcv9jop3ns0r.cn | 枕头发黄是什么原因hcv8jop3ns9r.cn | 10月5号是什么星座hcv9jop6ns1r.cn | 胆红素三个指标都高是什么原因hcv8jop9ns5r.cn | 红色加蓝色等于什么颜色xinmaowt.com |
天蝎座和什么星座最配hcv8jop8ns5r.cn | 孕妇佩戴什么保胎辟邪hcv9jop3ns0r.cn | 妤字属于五行属什么hcv9jop4ns3r.cn | 智能眼镜有什么功能hcv7jop9ns1r.cn | 尿路感染吃什么中成药hcv8jop4ns9r.cn |
奶奶的弟弟叫什么hcv9jop4ns7r.cn | 预防高原反应吃什么药hcv7jop7ns3r.cn | 花茶是什么茶hcv9jop4ns1r.cn | 脚气缺什么维生素hcv9jop5ns7r.cn | 右侧附件区囊性回声是什么意思hcv7jop5ns2r.cn |
Last revised on July 26, 2025 at 07:35:08. See the history of this page for a list of all contributions to it.